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Supplementary Note 1: Diffractions of azimuthal binary phase 

Azimuthal binary phase grating is a phase-only grating with periodically various phases along 
the azimuth direction. As shown in Fig. S1, the grating has azimuthal transition points along the 
azimuth direction, and there is a phase jump of 0~π or π~0 at each transition point. 

 

 
Fig. S1. The phase distribution of an azimuthal binary phase grating 
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In Fig. S1, φ is the azimuthal angle, {φκ} denotes the azimuthal transition points in one 
grating period (2π) with κ=0, 1, 2, …, Κ. For a rectangular element, taking [φ0,φ1] as an example, 
its phase distribution is: 

P1(φ)=π∙rect #
φ- $φ0+φ1% 2⁄

φ1-φ0
' , φ∈[0,2π)																																		  (S1) 

Eq. (2) has already given the phase distribution of an azimuthal binary phase. Actually, from Eq. 
(S1), it can also be expressed as the superposition of a series of rectangular impulses, and thus Eq. 
(2) turns to: 

PB(φ)=π + rect #
φ-0.5$φ2m-2+φ2m-1%

φ2m-1-φ2m-2
'

(K-1) 2⁄

m=1

, φ∈[0,2π]																											(S2) 

Thus, its transmittance function reads:                                                                                                   
	TB(φ)=exp[iPB(φ)]                                                           (S3) 

Fig.S1 has clearly illustrated the corresponding relationship between the transmittance and the phase 
distributions. When PB(φ)=0, TB(φ)=exp(i∙0)=1; when PB(φ)=π, TB(φ)=exp(i∙π)=-1. Similar to 
the phase distribution, the transmission function of the grating is also in the form of rectangular 
wave, which can be expressed by scaling, flipping and translating the phase distribution function as: 

TB(φ)=1-
2
π PB(φ)																																																																			 (S4) 

According to the linear property of the Fourier transform, F{TB(φ)}=F{1}-2/π·F{PB(φ)}. Thus, the 
Fourier transform of TB(φ) can be divided into two parts, as the Fourier transform of 1 and PB(φ) 
respectively: 

F{1}=2πδ(l)																																																																								(S5) 

F{𝑃$(𝜑)}= +
$φ2m+1-φ2m%

2 +2sinc30.5$φ2m+1-φ2m%l4exp3-il∙0.5$φ2m+φ2m+1%45exp(il𝜑)	
∞

l=-∞

(%&') (⁄

m=1

(S6) 

where l∈Z and represents the OAM eigen value. δ(l) stands for the Delta function, and sinc function 
is sinc(x)=sin(πx)	⁄	(πx). Then from Eq. (S4) to Eq. (S6), the transmittance of the grating can be 
Fourier expanded as: 

F{TB(φ)}=
1
𝜋 + $φ2m-φ2m+1% +2sinc30.5$φ2m+1-φ2m%l4exp3-il∙0.5$φ2m+φ2m+1%45exp(il𝜑)

∞

l=-∞

(K-1) 2⁄

m=1

	

																		+2πδ(l),	φ∈[0,2π)	                                                  (S7) 
From Eq. (S7), the far-field diffraction comprises multiple OAM modes exp(ilφ), with 
corresponding complex amplitude: 

+ $φ2m-φ2m+1%
(K-1) 2⁄

m=1

2sinc30.5$φ2m+1-φ2m%l4exp3-il∙0.5$φ2m+φ2m+1%45																					(S8) 

which is the function of azimuthal transition points {φκ}. Eq. (S8) imply the finally generated OAM 
spectrum is determined only by the number and value of azimuthal transition points. 
 
Supplementary Note 2: Helical harmonic decomposition 

Due to the azimuthally periodic distributions of helical harmonic, a beam E(r,φ) under polar 
coordinate can be expanded directly through helical harmonics exp(ilφ) as [42,48,49]: 
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𝐸(r,φ)=
1
√2π

+ al exp(ilφ)

+∞

l=-∞

      																																																		(S9) 

with the complex coefficient al: 

𝑎)=
1
√2π

> E(r,φ) exp(−ilφ) dφ
2π

0
      	  		   		  		         		            (S10) 

  The parameter al comprises the amplitude and initial phase of l-th OAM components. Hence |al|2 
corresponds to the intensity of OAM channel l and constitutes the OAM spectrum {|al|2}. 
Considering the relationship given in Eqs. (S8)-(S10), one can establish the function between the 
OAM spectrum {|al|2} and azimuthal transition points φκ as: 

|al|2= A + $φ2m-φ2m+1%
(K-1) 2⁄

m=1

2sinc30.5$φ2m+1-φ2m%l4exp3-il∙0.5$φ2m+φ2m+1%45A

2

						(S11) 

 
Supplementary Note 3: Transition points mapping 
   A phase-only grating with periodical varying binary phases along x or y directions in Cartesian 
coordinates, also known as Dammann grating, can divide an incident beam into multiple beams with 
equal intensities and identical interval angles, thus form a beam array [50,51]. In other words, lateral 
0-π binary phase induces the spatial expansion of the incident beam, namely, the superposition of 
several orders (diffraction order) in “x-space”. There are many transition points xκ (boundary points 
separating phase values 0 and π) in each grating period, and featured the transmittance function 
within the unit grating period as: 

TB(x)=π+(-1)κ-1rect B
x
xκ

-0.5C
Κ

κ=1

,	x∈[0,1)   																																	  (S12) 

From a mathematical point of view, Eq. (2) in the main text is essentially the same as that 
described in Equation (S12). Their difference reflects on the independent variables under various 
coordinates. Therefore, mapping the lateral transition points into azimuth contributes to similar 
effect as expanding the incident mode along azimuthal angle and forming the superposition of 
multiple azimuthal modes with equal intensities, namely, the OAM comb. 

In 1995, C. Zhou et al. have already studied the lateral transition points to produce 1 dimensional 
spatial beam array [43], where numerical solutions of optimal lateral transition points {xκ} within 
one unit grating period for various cases are proposed. For the azimuthal binary phase here, the 
azimuthal grating period is fixed as 2π. Additionally, the azimuthal angle φ varies uniformly along 
the azimuthal coordinate. Thus, the mapping can be accomplished easily through multiplying 2π, as 
φκ=2πxκ. 

Table S1 lists some of the azimuthal transition points, OAM distributions, uniformities U and 
efficiencies η of their corresponding generated OAM combs. Note that azimuthal transition points 
for generating OAM combs with mode internal Δl≠1 is derived through scaling the azimuthal angle 
φ. 

Table S1. Some of the azimuthal transition points and their corresponding OAM combs. 
Azimuthal transition points {φκ} OAM components {l} Uniformity U Efficiency η 

0, 3.1416 -1, +1 99.96% 80.70% 

0, 1.5708, 3.1416, 4.7124 -2, +2 99.99% 80.32% 
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0, 0.6283, 1.2566, 1.8850, 2.5133, 

3.1416, 3.7699, 4.3982, 5.0265, 

5.6549 

-5, +5 99.95% 83.31% 

0, 4.6200 -1, 0, +1 99.44% 63.03% 

0, 0.2425, 2.4555, 4.1186 -2, -1, 0, +1, +2 99.07% 76.27% 

0, 1.5399, 2.0944, 3.6343, 4.1888, 

5.7287 
-3, 0, +3 99.49% 60.19% 

0, 1.3859, 2.8000, 3.1416, 4.5275, 

5.9416 
-3, -1, +1, +3 99.80% 74.55% 

0, 0.6929, 1.4000, 1.5708, 2.2637, 

2.9708, 3.1416, 3.8345, 4.5416, 

4.7124, 5.4053, 6.1124 

-6, -2, +2, +6 99.51% 73.96% 

0, 0.7286, 1.3358, 1.6516, 3.1416, 

3.8702, 4.4774, 4.7932 
-6, -4, -2, 0, +2, +4, +6 98.80% 82.49% 

0, 0.4190, 0.8087, 1.7963, 2.8693, 

3.7127 
-4, -3, -2, -1, 0, +1, +2, +3, +4 99.61% 78.32% 

 
Supplementary Note 4: Simulation of far-field diffraction of azimuthal binary phase 

 The numerical simulation of far-field diffraction of azimuthal binary phase with incident 
Gaussian beams is based on the diffraction integral formula from scalar diffraction theory. Here 
Fresnel diffraction is chosen to simplify the diffraction integral formula under paraxial 
approximation. However, it may cause some problems, since Fresnel diffraction is not applicable in 
the calculation of the far-field diffraction but is good for the finite propagation distance. So here we 
have to bring in a Fourier lens in the diffraction path to address such issue, since the pattern on the 
back focal plane of the lens is the zoomed far-field diffraction patterns indeed.   

The transmittance function of a Fourier lens under Cartesian coordinates (x,y) is: 

TL= expDik∙
x2+y2

f E     																																																										   (S13) 

where k=2π/λ denotes wave number (λ is the wavelength), and f denotes focal length. The Fresnel 
transmission function is: 

HF(x,y,d)= exp #ikdD1-
x2+y2

2d2
E'      																																															 (S14) 

with d the transmission distance. From Fresnel diffraction integral, the diffraction field of E0 after 
d distance transmission reads [52]: 

Ed=F-1[F(E0)·HF]                            (S15) 
where F and F-1 are Fourier transform and Fourier inversion respectively. Equation (S15) allows us 
to use fast Fourier transform (FFT) to analyze the diffraction, and will make the calculation easier. 
  From the principle of Fourier optics, a plano-convex lens, namely the Fourier lens, should be 
placed behind the azimuthal binary phase grating at the position of the focal length f. Therefore, the 
field EF on the lens plane should be calculated firstly through Eqs. (S14) & (S15) with the 
transmission distance d=f and reads: 

EF=F-1[F(GTB)·HF(f)]                         (S16) 
where G and TB denote the complex amplitude of a Gaussian beam and the transmittance function 
of the azimuthal binary phase respectively. Then introducing the lens and the finally obtained far-
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field diffraction E at the back focal plane is: 
E=F-1[F(EFTL)·HF(f)]                         (S17) 

 
 
Supplementary Note 5: Experiment setup 
  An experimental setup, as sketched in Fig. S2, is built to show the performance of OAM comb 
generation through azimuthal binary phases. A 1.6 µm distributed feedback (DFB) laser diode is 
employed as the source. The DFB laser beam is transmitted through a single mode fiber (SMF) and 
coupled into free-space with 3 mm diameter through a collimator. After passing through a polarized 
beam splitter (PBS), the Gaussian beam turns into horizontally linear polarization, thus to satisfy 
the demand of phase-only modulation of the liquid-crystal spatial light modulator (SLM) (Holoeye, 
PLUTO-TELCO-013-C). The phase distribution of the proposed azimuthal binary phase is encoded 
on the SLM to produce desired OAM combs. The far-field diffraction patterns are observed through 
an infrared charge coupled device (CCD) camera accompanied with a plano-convex lens (PCL). 
Note that both of distances from SLM to PCL and from PCL to CCD, are fixed as the focal length 
of the PCL as f=200 mm. 

 
Fig. S2. Experimental setup. DFB, distributed feedback laser diode. SLM, single mode fiber. Col., collimator. PBS, 

polarized beam splitter. SLM, liquid-crystal spatial light modulator. PCL, plano-convex lens. CCD, infrared CCD 

camera. 

 
Supplementary Note 6: Azimuthal transition points in the experiment 

In the presented proof-of-principle experiment, two OAM combs are generated. This note gives 
the azimuthal transition points for generating the two OAM combs. 

(1) OAM comb 1: OAM states range: -63~+63, OAM mode interval Δl=2. 
{φκ} consists of 70 azimuthal transition points: 
{0, 0.0654, 0.1095, 0.1854, 0.2550, 0.2996, 0.3825, 0.4433, 0.5277, 0.6118, 0.6456, 0.8074, 

0.9000, 1.3369, 1.5495, 1.6505, 1.7605, 1.8155, 1.8639, 1.9960, 2.0368, 2.1219, 2.2730, 2.4053, 
2.4895, 2.5937, 2.6624, 2.7229, 2.7530, 2.8186, 2.8867, 2.9336, 2.9799, 3.0406, 3.0747, 3.1416, 
3.2070, 3.2511, 3.3270, 3.3966, 3.4412, 3.5241, 3.5849, 3.6693, 3.7534, 3.7872, 3.9490, 4.0416, 
4.4785, 4.6911, 4.7921, 4.9021, 4.9571, 5.0055, 5.1376, 5.1784, 5.2635, 5.4146, 5.5469, 5.6311, 
5.7353, 5.8040, 5.8645, 5.8946, 5.9602, 6.0283, 6.0752, 6.1215, 6.1822, 6.2163} 

(2) OAM comb 2: OAM states range: -62~+62, OAM mode interval Δl=4. 
{φκ} consists of 68 azimuthal transition points: 
{0, 0.1740, 0.2796, 0.3459, 0.4191, 0.5441, 0.6151, 0.6626, 0.7245, 0.7813, 1.0370, 1.0939, 

1.2598, 1.3609, 1.3858, 1.4618, 1.5205, 1.5708, 1.7448, 1.8504, 1.9167, 1.9899, 2.1149, 2.1859, 
2.2334, 2.2952, 2.3521, 2.6078, 2.6647, 2.8306, 2.9317, 2.9566, 3.0326, 3.0913, 3.1416, 3.3156, 
3.4212, 3.4875, 3.5607, 3.6857, 3.7567, 3.8042, 3.8660, 3.9229, 4.1786, 4.2355, 4.4014, 4.5025, 
4.5273, 4.6034, 4.6621, 4.7124, 4.8864, 4.9920, 5.0583, 5.1315, 5.2565, 5.3275, 5.3750, 5.4368, 
5.4937, 5.7494, 5.8063, 5.9722, 6.0733, 6.0981, 6.1742, 6.2329} 
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Supplementary Note 7: Experimental OAM spectrum analyzing 
  For the sake of simplicity, when measuring the OAM spectrum of the produced OAM comb, a 

series of spiral phases are encoded simultaneously with the azimuthal binary phase. Then a series 
of corresponding back-converted patterns are captured by the CCD. The principle of back-
conversion method can be understood as, if a -l-th order spiral phase is encoded, the OAM state l in 
the OAM comb turns to l-l=0, thus a bright spot emerges at the beam center. However, the other 
OAM states lo turns to lo-l≠0, and won’t concentrate to the center. Therefore, by measuring the 
intensity of the bright spot in each back-converted pattern, one can acquire the OAM spectrum. 
 Fig. S3 displays some of the experimentally captured back-converted patterns for the second 

generated OAM comb (l range -62~+62, Δl=4). The orders of the back-converting spiral phases are 
also labeled. The green dashed circle in each inset is the sampling area, where intensities inside it 
are regarded as the back-converted OAM channel. Note that the sampling area is selected as 
covering the entire bright spots of fundamental mode. Its size and position are fixed for all the back-
converted patters in analyzing one OAM comb. In addition, no optical power meters are employed 
here. The main feature of an OAM comb is the relative intensity among each OAM channels. The 
sum of every pixel’s gray value of the patterns received by the CCD camera is proportional to the 
real intensity of the incident beams when the received power is lower than the camera’s threshold 
[53]. Hence here the sum of pixel gray values inside the sampling area, which is obtained through 
image processing, is employed to represent the relative intensity indirectly. Note that the method of 
OAM spectrum measurement is diversiform, schemes like log-polar coordinate transformer [54] 
and rotational Doppler effect [55] is also feasible here. 

 
Fig. S3. Experimental back-converted patterns. Some of the experimental back-converted patterns of the 

generated OAM comb with l range -62~+62 and Δl=4 are listed. The green dashed circle in each inset shows the 

sampling area. 

 
 

 


